Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human mobility plays a key role in the dissemination of infectious diseases around the world. However, the complexity introduced by commuting patterns in the daily life of cities makes such a role unclear, especially at the intracity scale. Here, we propose a multiplex network fed with 9 months of mobility data with more than 107 million public bus validations in order to understand the relation between urban mobility and the spreading of COVID-19 within a large city, namely, Fortaleza in the northeast of Brazil. Our results suggest that the shortest bus rides in Fortaleza, measured in the number of daily rides among all neighborhoods, decreased [Formula: see text]% more than the longest ones after an epidemic wave. Such a result is the opposite of what has been observed at the intercity scale. We also find that mobility changes among the neighborhoods are synchronous and geographically homogeneous. Furthermore, we find that the most central neighborhoods in mobility are the first targets for infectious disease outbreaks, which is quantified here in terms of the positive linear relation between the disease arrival time and the average of the closeness centrality ranking. These central neighborhoods are also the top neighborhoods in the number of reported cases at the end of an epidemic wave as indicated by the exponential decay behavior of the disease arrival time in relation to the number of accumulated reported cases with decay constant [Formula: see text] days. We believe that these results can help in the development of new strategies to impose restriction measures in the cities guiding decision-makers with smart actions in public health policies, as well as supporting future research on urban mobility and epidemiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082688 | PMC |
http://dx.doi.org/10.1038/s41598-023-32786-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!