Water-assisted electron capture exceeds photorecombination in biological conditions.

J Chem Phys

Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université/CNRS, F-75005 Paris, France.

Published: April 2023

A decade ago, an electron-attachment process called interatomic Coulombic electron capture has been predicted to be possible through energy transfer to a nearby neighbor. It has been estimated to be competitive with environment-independent photorecombination, but its general relevance has yet to be established. Here, we evaluate the capability of alkali and alkaline earth metal cations to capture a free electron by assistance from a nearby water molecule. We introduce a characteristic distance r for this energy transfer mechanism in equivalence to the Förster radius. Our results show that water-assisted electron capture dominates over photorecombination beyond the second hydration shell of each cation for electron energies above a threshold. The assisted capture reaches distances equivalent to a fifth to seventh solvation shell for the studied cations. The far reach of the assisted electron capture is of significant general interest to the broad spectrum of research fields dealing with low-energy electrons, in particular radiation-induced damage of biomolecules. The here introduced distance measure will enable quantification of the role of the environment for assisted electron attachment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0138975DOI Listing

Publication Analysis

Top Keywords

electron capture
16
water-assisted electron
8
energy transfer
8
assisted electron
8
capture
6
electron
6
capture exceeds
4
exceeds photorecombination
4
photorecombination biological
4
biological conditions
4

Similar Publications

Live human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.

View Article and Find Full Text PDF

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

This study illuminates the mineral carbonation potential of zeolite minerals. Zeolite minerals are common alteration products of basaltic rocks and are known for their ability to rapidly exchange their interstitial cations with those in aqueous solutions. A series of closed system batch reactor experiments was conducted at 60 °C by combining stilbite, a Ca-bearing zeolite, with 0.

View Article and Find Full Text PDF

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF

Kaolinite induces rapid authigenic mineralisation in unburied shrimps.

Commun Earth Environ

January 2025

Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015 Switzerland.

Fossils preserving soft tissues and lightly biomineralized structures are essential for the reconstruction of past ecosystems and their evolution. Understanding fossilization processes, including decay and mineralisation, is crucial for accurately interpreting ancient morphologies. Here we investigate the decay of marine and freshwater shrimps deposited on the surface of three different clay beds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!