A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polarity-dependence of the nonlinear dielectric response in interfacial water. | LitMetric

Polarity-dependence of the nonlinear dielectric response in interfacial water.

J Chem Phys

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA.

Published: April 2023

Molecular dynamics simulations are used to study the nonlinear dielectric responses of a confined aqueous film in a planar nanopore under perpendicular electric fields at varied voltages between confining graphene sheets. Dielectric saturation reminiscent of the bulk phase behavior is prevalent at very strong fields, whereas we observe a nonmonotonic permittivity dependence on the electric field at intermediate strengths where field-alignment and spontaneous polarization of interfacial water are of comparable magnitude. The coupling between the two effects results in distinct dielectric responses at opposite confinement walls. The normal component of both the differential dielectric constant and dielectric difference constant tensors averaged over the region closer to the wall under an incoming electric field (field pointing from the liquid to the solid phase) initially increases with the strength of the imposed field. The differential permittivity peaks at a field strength previously shown to offset the surface-induced orientation bias of hydration molecules at this wall. Further strengthening of the field results in a conventional saturation behavior. At the opposite wall (subject to outgoing field) and in the central region of the water slab, the nonlinear dielectric response resembles bulklike saturation. The conditions at the permittivity extremum coincide with the window of accelerated reorientation rates of interfacial water molecules under an incoming field we uncovered in earlier molecular dynamics analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0142483DOI Listing

Publication Analysis

Top Keywords

nonlinear dielectric
12
interfacial water
12
dielectric response
8
molecular dynamics
8
dielectric responses
8
field
8
electric field
8
dielectric
7
polarity-dependence nonlinear
4
response interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!