The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00967970DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
24
electroconvulsive shock
16
acid
13
acid electroconvulsive
8
palmitic acid
8
[1-14c]palmitic acid
8
free fatty
8
fatty acid
8
fatty acids
8
electroconvulsive
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!