A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fine-Grained Lesion Classification Framework for Early Auxiliary Diagnosis. | LitMetric

The deep neural networks are envisaged for the early disease diagnosis from medical images. However, in the early stage of the disease, the medical images of patients and healthy people have only subtle visual differences. Distinguishing the medical images for early diagnosis belongs to the Fine-Grained Visual Classification (FGVC) task. Many recent works are based on a standard FGVC learning paradigm: locate the discriminative regions first and then classify by fusing the information of these regions. However, it is still not enough for medical images. Because the shape and size of the lesions are variable, and the relationship between lesions and the background is complex. In order to solve these problems, we propose a fine-grained lesion classification framework for early auxiliary diagnosis. We first locate and extract multiple lesions with different sizes and shapes from the original image and then fuse the feature of lesion and background based on attention mechanism. As shown by experiment results in two real-world clinical data sets, our model can locate accurately and perform better.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2023.3260108DOI Listing

Publication Analysis

Top Keywords

medical images
16
fine-grained lesion
8
lesion classification
8
classification framework
8
framework early
8
early auxiliary
8
auxiliary diagnosis
8
images early
8
early
5
diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!