A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predator: Predicting the Impact of Cancer Somatic Mutations on Protein-Protein Interactions. | LitMetric

AI Article Synopsis

  • Understanding protein-protein interactions is crucial for cancer research, especially regarding mutations that disrupt these interactions, which are typically overlooked in current stability-focused methods.
  • A new ensemble model called Predator has been developed to classify interface mutations as either disruptive or nondisruptive, demonstrating improved prediction accuracy over existing methods.
  • When applied to various TCGA cancer cohorts, Predator identifies genes with potentially disruptive mutations and reveals patterns of mutual exclusivity among these genes and their interactions across different cancer types.

Article Abstract

Since many biological processes are governed by protein-protein interactions, understanding which mutations lead to a disruption in these interactions is profoundly important for cancer research. Most of the existing methods focus on the stability of the protein without considering the specific effects of a mutation on its interactions with other proteins. Here, we focus on somatic mutations that appear on the interface regions of the protein and predict the interactions that would be affected by a mutation of interest. We build an ensemble model, Predator, that classifies the interface mutations as disruptive or nondisruptive based on the predicted effects of mutations on specific protein-protein interactions. We show that Predator outperforms existing approaches in literature in terms of prediction accuracy. We then apply Predator on various TCGA cancer cohorts and perform comprehensive analysis at cohort level, patient level, and gene level in determining the genes whose interface mutations tend to yield a disruption in its interactions. The predictions obtained by Predator shed light on interesting patterns on several genes for each cohort regarding their potential as cancer drivers. Our analyses further reveal that the identified genes and their frequently disrupted partners exhibit patterns of mutually exclusivity across cancer cohorts under study.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2023.3262119DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
12
somatic mutations
8
disruption interactions
8
interface mutations
8
cancer cohorts
8
interactions
7
mutations
6
predator
5
cancer
5
predator predicting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!