Image collage is a very useful tool for visualizing an image collection. Most of the existing methods and commercial applications for generating image collages are designed on simple shapes, such as rectangular and circular layouts. This greatly limits the use of image collages in some artistic and creative settings. Although there are some methods that can generate irregularly-shaped image collages, they often suffer from severe image overlapping and excessive blank space. This prevents such methods from being effective information communication tools. In this article, we present a shape slicing algorithm and an optimization scheme that can create image collages of arbitrary shapes in an informative and visually pleasing manner given an input shape and an image collection. To overcome the challenge of irregular shapes, we propose a novel algorithm, called Shape-Aware Slicing, which partitions the input shape into cells based on medial axis and binary slicing tree. Shape-Aware Slicing,which is designed specifically for irregular shapes, takes human perception and shape structure into account to generate visually pleasing partitions. Then, the layout is optimized by analyzing input images with the goal of maximizing the total salient regions of the images. To evaluate our method, we conduct extensive experiments and compare our results against previous work. The evaluations show that our proposed algorithm can efficiently arrange image collections on irregular shapes and create visually superior results than prior work and existing commercial tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2023.3262039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!