A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensor Selection with Composite Features in Identifying User-Intended Poses for Human-Prosthetic Interfaces. | LitMetric

A Human-Prosthetic Interface (HPI) serves to estimate and realise the limb pose intended by the human user, using the information obtained from sensors worn by the user. In recent studies, the HPI maps multi-joint limb poses (i.e. coordinated movement of the body and limbs) to the inputs of multiple sensors. This is in contrast to the conventional methods where each degree of freedom of the powered prosthesis is mapped to the input of one/a pair of sensors. In this approach, it is necessary to systematically select sensors that carry the most information for the intended set of poses, to improve system accuracy and/or minimise the number of sensors, thus the complexity, in the prosthetic system. In this paper, sensor selection process is systematically formulated to maximise the information contained in the input features for a given number of sensors. Most importantly, it accounts for composite features, which are features requiring information from multiple sensors. Such composite features exist and are important in HPIs as we seek to capture coordinated motion involving movements of multiple limb and body segments. A non-convex optimisation problem is formulated which accounts for the constraint introduced by the composite features. A projection matrix is utilised as the optimisation variable to select intended features for evaluation. The problem is solved by the proposed Sensor Selection with Composite Features (SS-CF) algorithm which adapts convex-relaxation techniques. The SS-CF is benchmarked against HPI with expert-selected sensors in the literature and against a greedy heuristic method. The outcome demonstrated the efficacy of the SS-CF algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3258225DOI Listing

Publication Analysis

Top Keywords

composite features
20
sensor selection
12
selection composite
8
features
8
sensors
8
multiple sensors
8
number sensors
8
ss-cf algorithm
8
composite
5
features identifying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!