Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the major goals in gene expression data analysis is to explore and discover groups of genes and groups of biological conditions with meaningful relationships. While this problem can be addressed by algorithms, their results require an analysis within context, since they may be affected by many side processes -such as tissue differentiation- that could hinder the target goal. Visual analytics-based methods for exploratory analysis of the gene expression matrix (GEM) are essential in biomedical research since they allow us to frame the analysis within the user's knowledge domain. In this paper, we present a visual analytics approach to discover relevant connections between genes and samples based on linking a reordered GEM heatmap and dual 2D projections of its rows and columns, which can be recomputed conditioned by subsets of genes and/or samples selected by the user during the analysis. We demonstrate the capability of our approach to discover relevant knowledge in three case studies involving two cancer types plus normal tissue from the TCGA database.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2023.3264029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!