Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic Resonance Elastography (MRE) can characterize biomechanical properties of soft tissue for disease diagnosis and treatment planning. However, complicated wavefields acquired from MRE coupled with noise pose challenges for accurate displacement extraction and modulus estimation. Using optimization-based displacement extraction and Traveling Wave Expansion-based Neural Network (TWENN) modulus estimation, we propose a new pipeline for processing MRE images. An objective function with Dual Data Consistency (Dual-DC) has been used to ensure accurate phase unwrapping and displacement extraction. For the estimation of complex wavenumbers, a complex-valued neural network with displacement covariance as an input has been developed. A model of traveling wave expansion is used to generate training datasets for the network with varying levels of noise. The complex shear modulus map is obtained through fusion of multifrequency and multidirectional data. Validation using brain and liver simulation images demonstrates the practical value of the proposed pipeline, which can estimate the biomechanical properties with minimal root-mean-square errors when compared to state-of-the-art methods. Applications of the proposed method for processing MRE images of phantom, brain, and liver reveal clear anatomical features, robustness to noise, and good generalizability of the pipeline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3261346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!