A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyperspectral Imaging in Brain Tumor Surgery-Evidence of Machine Learning-Based Performance. | LitMetric

Background: Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared.

Methods: We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods.

Results: The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery.

Conclusions: In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2023.03.149DOI Listing

Publication Analysis

Top Keywords

neurosurgical hsi
12
hsi
10
hyperspectral imaging
8
machine learning-based
8
intraoperative hsi
8
hsi guidance
8
imaging brain
4
brain tumor
4
tumor surgery-evidence
4
surgery-evidence machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!