Healthy coupling of the food-water-land-ecosystem (FWLE) nexus is the basis for achieving sustainable development (SD), and FWLE in drylands is frontier scientific issues in the study of coupled human land systems. To comprehensively safeguard the future food, water, and ecological security of drylands, this study examined the implications for FWLE linkages in a typical Chinese dryland from the perspective of future land-use change. First, four different land-use scenarios were proposed using a land-use simulation model with a gray multi-objective algorithm, including an SD scenario. Then, the variation of three ecosystem services was explored: water yield, food production, and habitat quality. Finally, redundancy analysis was used to derive the future drivers of FWLE and explore their causes. The following results were obtained. In the future in Xinjiang, under the business as usual scenario, urbanization will continue, forest area will decrease, and water production will decline by 371 million m. In contrast, in the SD scenario, this negative impact will be substantially offset, water scarcity will be alleviated, and food production will increase by 1.05 million tons. In terms of drivers, the anthropogenic drivers will moderate the future urbanization of Xinjiang to some extent, with natural drivers dominating the sustainable development scenario by 2030 and a potential 22 % increase in the drivers of precipitation. This study shows how spatial optimization can help protect the sustainability of the FWLE nexus in drylands and simultaneously provides clear policy recommendations for regional development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163183DOI Listing

Publication Analysis

Top Keywords

typical chinese
8
chinese dryland
8
fwle nexus
8
sustainable development
8
food production
8
production will
8
will
7
future
6
fwle
5
drivers
5

Similar Publications

The genus boasts abundant germplasm resources and comprises numerous species. Among these, medicinal plants of this genus, which have a long history, have garnered attention of scholars. This study sequenced and analyzed the chloroplast genomes of six species of medicinal plants (, , , , , and , respectively) to explore their interspecific relationships.

View Article and Find Full Text PDF

Amniotic fluid assessment is crucial in prenatal ultrasound to monitor fetal conditions, with polyhydramnios, characterized by excessive amniotic fluid, affecting 1%-2% of pregnancies. Polyhydramnios is linked to complications such as placental abruption, preterm labor, congenital anomalies, and postpartum hemorrhage, emphasizing the need for early detection and management. While idiopathic causes account for 60%-70% of cases, other causes include impaired fetal swallowing and increased urine production due to maternal, fetal, and placental conditions.

View Article and Find Full Text PDF

Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed , OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years.

View Article and Find Full Text PDF

Patients with Type 2 diabetes mellitus(T2DM) typically have an average or higher bone mineral density (BMD) but are at a significantly higher risk of fracture than patients without diabetes. Trabecular bone score (TBS) is a textural index derived from pixel gray-level variations in lumbar spine DXA image, which has been introduced as an indirect measure of bone quality. This study aimed to discuss the trends and annual rates of change in BMD and TBS with age in Chinese men with T2DM and men without diabetes mellitus.

View Article and Find Full Text PDF

The plastic waste accumulation requires facile yet effective solutions. Currently mechanical recycling typically leads to downcycling, while the environmental footprint of chemical recycling is often unacceptable. Here, we introduce a dual circularity concept, where rational molecular design paves the way for complementary closed-loop mechanical and chemical recyclability under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!