Viral infection induces diverse cellular immune responses. Some viruses induce the production of antiviral cytokines, alterations of endogenous gene expression, and apoptosis; however, other viruses replicate without inducing such responses, enabling them to persistently infect cells. Infection by Borna disease virus type 1 (BoDV-1) can result in fatal immune-mediated encephalitis, including in humans, yet infection of cells in vitro is generally persistent. The regulatory mechanisms underlying this persistent infection remain unclear. Here, we show that an enhancer of RNA-silencing, TRBP, positively regulates BoDV RNA level in human cells. Knockdown of TRBP decreased BoDV RNA levels in persistently-infected cells, whereas overexpression of TRBP increased BoDV RNA levels. To investigate the mechanism underlying this phenomenon, we performed immunoprecipitation assays and found that TRBP interacts with BoDV RNA. Furthermore, we performed cell fractionation, which revealed that persistent infection with BoDV does not alter the localization of TRBP and other RNA silencing factors in cells. Our results showed the regulation of persistent BoDV infection by RNA-silencing factors in human cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.03.069 | DOI Listing |
Front Immunol
December 2024
School of Basic Medicine, Guangzhou Medical University, Guangzhou, China.
Introduction: Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development.
View Article and Find Full Text PDFActa Vet Scand
November 2024
Department of Animal Biosciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07, Uppsala, Sweden.
Background: Staggering disease (SD) is a severe neurological disease that has been regularly reported in Swedish cats since the beginning of the 1970s. The aetiology of SD has been debated, but novel rustrela virus (RusV) was recently suggested as the causative agent in Swedish cases dating from 2017 onwards. However, whether RusV was associated with earlier cases of feline SD in Sweden remained unknown.
View Article and Find Full Text PDFJ Med Virol
October 2024
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Microbiol Immunol
November 2024
Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Borna disease virus 1 (BoDV-1) causes acute fatal encephalitis in mammals, including humans. Despite its importance, research on BoDV-1 cell entry has been hindered by low infectious viral particle production in cells and the lack of cytopathic effects, which are typically useful for screening. To address these issues, we developed a method to efficiently produce vesicular stomatitis virus (VSV) pseudotyped with glycoprotein (G) of members of the genus Orthobornavirus, including BoDV-1.
View Article and Find Full Text PDFInfection
October 2024
Department of Neurology, Klinikum Landshut, Landshut, Germany.
Background: Within endemic regions in southern and eastern Germany, Borna disease virus 1 (BoDV-1) causes rare zoonotic spill-over infections in humans, leading to encephalitis with a high case-fatality risk. So far, intra-vitam diagnosis has mainly been based on RT-qPCR from cerebrospinal fluid (CSF) and serology, both being associated with diagnostic challenges. Whilst low RNA copy numbers in CSF limit the sensitivity of RT-qPCR from this material, seroconversion often occurs late during the course of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!