Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. Although many marine crustaceans are highly susceptible to MPs pollution, the toxicological effects and mechanisms of MPs on crustaceans are poorly understood. The current study focused on the impacts of MPs accumulation in shrimp Litopenaeus vannamei at the behavioral, histological and biochemical levels. The results demonstrated the accumulation of polystyrene MPs in various organs of L. vannamei, with highest MPs abundance in the hepatopancreas. The MPs accumulated in shrimp caused growth inhibition, abnormal swimming behavior and reduced swimming performance of L. vannamei. Following MPs exposure, oxidative stress and lipid peroxidation were also observed, which were strongly linked to attenuated swimming activity of L. vannamei. The above MPs-induced disruption in balance of antioxidant system triggered the hepatopancreatic damage in L. vannamei, which was exacerbated with increasing MPs concentrations (from 0.02 to 1 mg L). Furthermore, metabolomics revealed that MPs exposure resulted in alterations of metabolic profiles and disturbed glycolysis, lipolysis and amino acid metabolism pathways in hepatopancreas of L. vannamei. This work confirms and expands the knowledge on the sublethal impacts and toxic modes of action of MPs in L. vannamei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.114871 | DOI Listing |
Environ Pollut
January 2025
Department of Public Health, China Medical University, Taichung City, Taiwan. Electronic address:
Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, 5000 Iloilo City, Philippines.
The plastic revolution's contribution to global pollution gives rise to microplastics (MPs), bearing a toll on the marine environment. Knowledge of mangrove exposure to MPs causing adverse effects has yet to be elucidated. Hence, the physiological responses of R.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain. Electronic address:
Microplastics (MPs) are emerging pollutants found worldwide, not only in environmental matrices but also in the food web. The present study aimed to establish better removal rates of MPs in cultivated or harvested edible bivalves currently on the market. Samples of three species (mussels, oysters and wedge clams) were collected from a producer at three different depuration times.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India; Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!