The efficiency with which the brain reorganizes following injury not only depends on the extent and the severity of the lesion, but also on its temporal features. It is established that diffuse low-grade gliomas (DLGG), brain tumours with a slow-growth rate, induce a compensatory modulation of the anatomo-functional architecture, making this kind of tumours an ideal lesion model to study the dynamics of neuroplasticity. Direct electrostimulation (DES) mapping is a well-tried procedure used during awake resection surgeries to identify and spare cortical epicentres which are critical for a range of functions. Because DLGG is a chronic disease, it inevitably relapses years after the initial surgery, and thus requires a second surgery to reduce tumour volume again. In this context, contrasting the cortical mappings obtained during two sequential neurosurgeries offers a unique opportunity to both identify and characterize the dynamic (i.e. re-evolving) patterns of cortical re-arrangements. Here, we capitalized on an unprecedented series of 101 DLGG patients who benefited from two DES-guided neurosurgeries usually spaced several years apart, resulting in a large DES dataset of 2082 cortical sites. All sites (either non-functional or associated with language, speech, motor, somatosensory and semantic processing) were recorded in Montreal Neurological Institute (MNI) space. Next, we used a multi-step approach to generate probabilistic neuroplasticity maps that reflected the dynamic rearrangements of cortical mappings from one surgery to another, both at the population and individual level. Voxel-wise neuroplasticity maps revealed regions with a relatively high potential of evolving reorganizations at the population level, including the supplementary motor area (SMA, Pmax = 0.63), the dorsolateral prefrontal cortex (dlPFC, Pmax = 0.61), the anterior ventral premotor cortex (vPMC, Pmax = 0.43) and the middle superior temporal gyrus (STG Pmax = 0.36). Parcel-wise neuroplasticity maps confirmed this potential for the dlPFC (Fisher's exact test, PFDR-corrected = 6.6 × 10-5), the anterior (PFDR-corrected = 0.0039) and the ventral precentral gyrus (PFDR-corrected = 0.0058). A series of clustering analyses revealed a topological migration of clusters, especially within the left dlPFC and STG (language sites); the left vPMC (speech arrest/dysarthria sites) and the right SMA (negative motor response sites). At the individual level, these dynamic changes were confirmed for the dlPFC (bilateral), the left vPMC and the anterior left STG (threshold free cluster enhancement, 5000 permutations, family-wise error-corrected). Taken as a whole, our results provide a critical insight into the dynamic potential of DLGG-induced continuing rearrangements of the cerebral cortex, with considerable implications for re-operations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awad116DOI Listing

Publication Analysis

Top Keywords

neuroplasticity maps
12
patterns cortical
8
cortical mappings
8
individual level
8
left vpmc
8
cortical
6
sites
5
intraoperative functional
4
functional remapping
4
remapping unveils
4

Similar Publications

Learning to hear again with alternating cochlear frequency allocations.

Sci Rep

January 2025

Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.

View Article and Find Full Text PDF

Alterations in white matter (WM) microstructure are commonly found in migraine patients. Here, we employ a longitudinal study of episodic migraine without aura using diffusion MRI (dMRI) to investigate whether such WM microstructure alterations vary through the different phases of the pain cycle. Fourteen patients with episodic migraine without aura related with menstruation were scanned through four phases of their (spontaneous) migraine cycle (interictal, preictal, ictal and postictal).

View Article and Find Full Text PDF
Article Synopsis
  • Latent learning allows the brain to create cognitive maps from experiences without needing reinforcement, focusing on the implicit memory aspect.
  • Researchers studied mice's hippocampal neurons during this process and found that the neural state shifts from a complex to a simpler structure that mirrors the physical environment.
  • A specific group of neurons showed weak spatial tuning initially but became more correlated with others, enhancing codification and linking various place fields into a cohesive map, highlighting how latent learning likely occurs in the hippocampus.
View Article and Find Full Text PDF
Article Synopsis
  • Animals, especially mammals, utilize grid cells in the medial entorhinal cortex to create a spatial map of their surroundings to help locate resources like food and shelter.
  • Researchers recorded over 15,000 grid cells in mice to examine how quickly these cells adapt their firing patterns in response to changes in the environment, finding that fixed visual landmarks provide stable input for these cells.
  • The study highlights a dual mechanism in the brain where fixed connections ensure quick adaptation to new environments, while plasticity in other brain regions allows for more precise navigation over time, suggesting a broader principle of flexible connectivity in neural networks.
View Article and Find Full Text PDF

Voxel-Based Lesion Analysis of Ideomotor Apraxia.

Brain Sci

August 2024

Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA.

Ideomotor apraxia is a cognitive disorder most often resulting from acquired brain lesions (i.e., strokes or tumors).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!