Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988665 | PMC |
http://dx.doi.org/10.1113/EP090768 | DOI Listing |
Sci Rep
January 2025
Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Over 50% of individuals with lower limb loss report a fear of falling and avoiding daily activities partly due to a lack of plantar sensation. Providing direct somatosensory feedback via neural stimulation holds promise for addressing this issue. In this study, three individuals with lower limb loss received a sensory neuroprosthesis (SNP) that provided plantar somatosensory feedback corresponding to prosthesis-floor interactions perceived as arising from the missing foot generated by electrically activating the peripheral nerves in the residuum.
View Article and Find Full Text PDFTranscranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Anesthesiology and Reanimation, Zonguldak Bülent Ecevit University Medicine Faculty, Zonguldak, Türkiye.
Background: Although both the lateral sagittal and costoclavicular approaches are applied at the cord level in the infraclavicular region, there is a major difference between the distributions of the two approaches. We aimed to investigate the effects of this different distribution on tissue perfusion and oxygenation.
Methods: Sixty patients undergoing elective elbow, forearm, wrist and hand surgery under infraclavicular brachial plexus block were included in the study.
NPJ Microgravity
January 2025
Aix Marseille Univ, CNRS, ISM, Marseille, France.
The importance of gravity for human motor control is well established, but it remains unclear how the central nervous system accounts for gravitational changes to perform complex motor skills. We tested the hypothesis that microgravity and hypergravity have distinct effects on the neuromuscular control of reaching movements compared to normogravity. To test the influence of gravity levels on sensorimotor planning and control, participants (n = 9) had to reach toward visual targets during parabolic flights.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Psychology, Concordia University, Montreal, Quebec, Canada.
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!