Aiming to improve the environmental stability of organic photovoltaics, a multilayered SiO C /a-SiN (O):H composite barrier film coated with a hydrophobic perfluoro copolymer stop layer for polymer:non-fullerene solar cells is developed. The composite film is prepared by spin-coating of polysilicone and perhydropolysilazane (PHPS) following a densification process by vacuum ultraviolet irradiation in an inert atmosphere. The transformation of polysilicone and PHPS to SiO C and a-SiN (O):H is confirmed by Fourier transform infrared and energy-dispersive X-ray spectroscopy measurement. However, the as-prepared PHPS-derived silicon nitride (PDSN) can react with moisture in the ambient atmosphere, yielding microscale defects and a consequent poor barrier performance. Treating the incomplete PDSN with methanol vapor significantly densifies the film yielding low water vapor transmission rates (WVTRs)of 5.0 × 10 and 2.0 × 10 g m d for the one- and three-couple of SiO C /a-SiN (O):H (CON) composite films, respectively. By incorporating a thin hydrophobic perfluoro copolymer layer, the three-coupled methanol-treated CON film with a total thickness of 600 nm shows an extremely low WVTR of 8.7 × 10 g m d . No performance decay is measured for the PM6:Y6 and PM6:L8-BO cells after such an encapsulation process. These encapsulated polymer cells show good stability storaged at 25 °C/50% relative humidity, or under simulated extreme rainstorm tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202300224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!