This study performed large-scale single shear tests on Haikou red clay and arbor taproot to explore the anti-sliding effect and deformation characteristics of rainforest arbor roots under a shallow landslide. The law of root deformation and the root-soil interaction mechanism were revealed. The results indicated the significant reinforcing effect of arbor roots on the shear strength and ductility of soil, which increased with the decrease of normal stress. The soil reinforcement mechanism of arbor roots was attributed to their friction and retaining effects through an analysis of the movement of soil particles and the deformation pattern of roots during the shear process. The root morphology of arbors under shear failure could be described using an exponential function. Consequently, an advanced Wu model which better reflected the stress state and deformation of roots was proposed based on the concept of curve segment superposition. The results are believed to a reliable experimental and theoretical basis for the in-depth study of soil consolidation and sliding resistance effects of arbor roots, and further lay a foundation for the slope protection by arbor roots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082017 | PMC |
http://dx.doi.org/10.1038/s41598-023-32304-1 | DOI Listing |
Clin Adv Periodontics
January 2025
Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.
Background: Gingival recession has a multifactorial etiology, involving various predisposing and precipitating factors. Non-carious cervical lesions (NCCLs) are often associated with gingival recession and pose challenges due to their complex pathodynamics. There is limited evidence regarding tunnel-based procedures combined with connective tissue grafts (CTGs) for treating recession-associated NCCLs.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Forest and Conservation Sciences, Department of Botany, University of British Columbia, Vancouver, Canada.
The discipline of ecology and evolutionary biology (EEB) has long grappled with issues of inclusivity and representation, particularly for individuals with systematically excluded and marginalized backgrounds or identities. For example, significant representation disparities still persist that disproportionately affect women and gender minorities; Black, Indigenous, and People of Color (BIPOC); individuals with disabilities; and people who are LGBTQIA+. Recent calls for action have urged the EEB community to directly address issues of representation, inclusion, justice, and equity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea. Electronic address:
The root epidermis of Arabidopsis (Arabidopsis thaliana) consists of two distinct cell types: hair (H) cells and non-hair (N) cells, whose patterning is regulated by a network of genes. Among these, the WEREWOLF (WER) gene, encoding an R2R3 MYB transcription factor, acts as a master regulator by promoting the expression of key downstream genes, such as GLABRA2 and CAPRICE. However, the mechanisms controlling WER expression have remained largely unexplored.
View Article and Find Full Text PDFMol Genet Genomics
December 2024
Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.
View Article and Find Full Text PDFGenome Med
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!