Nonreplicating synthetic mRNA vaccines: A journey through the European (Journal of Immunology) history.

Eur J Immunol

Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland.

Published: July 2023

The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000. The first clinical studies investigating mRNA vaccines in humans were performed as collaboration between CureVac and the University of Tübingen in Germany as early as 2003. Finally, the first worldwide approved mRNA vaccine (an anti-COVID-19 vaccine) is based on the mRNA technologies developed by BioNTech since its 2008 foundation in Mainz, Germany, and earlier by the pioneering academic work of its founders. In addition to the past, present, and future of mRNA-based vaccines, the article aims to present the geographical distribution of the early work, how the development of the technology was implemented by several independent and internationally distributed research teams, as well as the controversies on the optimal way to design or formulate and administer mRNA vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202249941DOI Listing

Publication Analysis

Top Keywords

mrna vaccines
12
mrna vaccine
12
mrna
8
synthetic mrna
8
european journal
8
journal immunology
8
development technology
8
nonreplicating synthetic
4
vaccines
4
vaccines journey
4

Similar Publications

Safety of two-dose schedule of COVID-19 adsorbed inactivated vaccine (CoronaVac; Sinovac/Butantan) and heterologous additional doses of mRNA BNT162b2 (Pfizer/BioNTech) in immunocompromised and immunocompetent individuals.

Rev Inst Med Trop Sao Paulo

January 2025

Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica de Moléstias Infecciosas e Parasitárias, Laboratório de Investigação Médica em Imunologia (LIM-48), SSão Paulo, São Paulo, Brazil.

Immunocompromised individuals were considered high-risk for severe disease due to SARS COV-2 infection. This study aimed to describe the safety of two doses of COVID-19 adsorbed inactivated vaccine (CoronaVac; Sinovac/Butantan), followed by additional doses of mRNA BNT162b2 (Pfizer/BioNTech) in immunocompromised (IC) adults, compared to immunocompetent/healthy (H) individuals. This phase 4, multicenter, open label study included solid organ transplant and hematopoietic stem cell transplant recipients, cancer patients and people with inborn errors of immunity with defects in antibody production, rheumatic, end-stage chronic kidney or liver disease, who were enrolled in the IC group.

View Article and Find Full Text PDF

Tuberculosis vaccines and therapeutic drug: challenges and future directions.

Mol Biomed

January 2025

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.

Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.

View Article and Find Full Text PDF

Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.

Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.

View Article and Find Full Text PDF

VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored.

View Article and Find Full Text PDF

Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: the past, present, and future.

Front Immunol

January 2025

Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

Due to their widespread geographic distribution and frequent outbreaks, mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are considered significant global public health threats and contribute to dramatic socioeconomic imbalances worldwide. The global prevalence of these viruses is largely driven by extensive international travels and ecological disruptions that create favorable conditions for the breeding of and species, the mosquito vectors responsible for the spread of these pathogens. Currently, vaccines are available for only DENV, YFV, and JEV, but these face several challenges, including safety concerns, lengthy production processes, and logistical difficulties in distribution, especially in resource-limited regions, highlighting the urgent need for innovative vaccine approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!