Introduction: The mechanical distribution of the mandible is an important factor that affects functional orthosis during Twin-block (TB) appliance correction. Changes in the mandible before and after TB appliance correction are also key factors in maintaining the therapeutic effect. Finite element analysis, a powerful numerical, analytical tool, is widely used to predict the stress and strain distribution of the craniofacial bone that orthodontics generates.
Methods: The sample was a 14-year-old male patient with Class II malocclusion during growth. A cone-beam computed tomography scan was undertaken at pretreatment and posttreatment. In the Finite element analysis of the pretreatment model, the remote displacement model of the mandible was established with the sella point as the center. A mandibular model under TB appliance loading was established. Its mandibular displacement and von Mises stress were compared before and after loading. Three-dimensional registration was conducted on the pretreatment and posttreatment models to measure the sagittal displacement of the centrosome.
Results: The force on the mandible occurred mainly in the condyle neck and medial mandible after the TB appliance moved the mandible. After displacement, the posterior upper margin of the condyle was farther away from the articular fossa. Three-dimensional registration results showed that new bone had formed behind and above the condyle after TB appliance treatment.
Conclusion: The TB appliance provides additional advantages in treating skeletal Class II malocclusions by helping to reduce the burden on the temporomandibular joint and promoting the adaptive reconstruction of the mandible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2023.02.012 | DOI Listing |
Eur J Dent
March 2025
Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands.
Objectives: This article evaluates the marginal and internal gap, interfacial volume, and fatigue behavior in computer-aided design-computer-aided manufacturing (CAD-CAM) restorations with different designs (crowns or endocrowns) made from lithium disilicate-based ceramic (LD, IPS e.max CAD, Ivoclar AG) or resin composite (RC, Tetric CAD, Ivoclar AG).
Materials And Methods: Simplified LD and RC crowns (-C) and endocrowns (-E) were produced ( = 10) using CAD-CAM technology, through scanning (CEREC Primescan, Dentsply Sirona) and milling (CEREC MC XL, Dentsply Sirona), and then adhesively bonded to fiberglass-reinforced epoxy resin.
J Neural Eng
March 2025
Electrical and Computer Engineering, University of Tehran College of Engineering, North Kargar Street, Tehran, Tehran, Tehran, 1439957131, Iran (the Islamic Republic of).
Despite remarkable advances in EMG-based hand motor decoding, developing a practical and reliable decoder for robotic prosthetic hands remains unsolved. This study highlights inter-individual, inter-session, and intra-session variabilities of EMG signals as practical challenges and introduces a novel personalized and adaptive motor decoding framework, designed to mitigate their impact and improve hand motor decoding. A dataset was collected from twelve participants (8 male, 4 female), incorporating EMG signals from three forearm muscles during 20 repetitions of 9 distinct hand motions.
View Article and Find Full Text PDFJ Acoust Soc Am
March 2025
Shaanxi Key Laboratory of Ultrasonics, School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
The exact expressions of the three-dimension acoustic radiation torque (ART) of a viscoelastic sphere arbitrarily positioned in a zero-order Mathieu beam (zMB) are derived in this paper. The effects of the ellipticity parameters, half-cone angles, dimensionless frequency, and particle position on the acoustic radiation torques of the spherical particle are studied. Simulation results show the axial ART is zero for an arbitrarily positioned viscoelastic PE sphere in a zMB, while for the x or y axis ART, it varies significantly with the particle position and beam parameters.
View Article and Find Full Text PDFJ Med Life
January 2025
Doctoral School of Materials Science and Engineering, Politehnica University of Bucharest, Bucharest, Romania.
This study compared the biomechanical behavior of three widely used dental materials-zirconia, lithium disilicate (IPS e.max CAD), and 3D-printed composite (VarseoSmile CrownPlus)- for maxillary anterior bridge restorations. Finite element analysis (FEA) was employed to evaluate the mechanical response of these materials under normal occlusal forces, replicating real clinical conditions.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2025
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Clinical Research Center of Oral Diseases, Guangzhou, China.
Purpose: This study aims to investigate the stress distribution in bone tissue, implant, abutment, screw, and bridge restoration when the mesial implant is placed axially and the distal implant is inserted at varying angles in the posterior maxillary region with free-end partial dentition defects, using three-dimensional finite element analysis.
Materials And Methods: Cone-beam computed-tomography were utilized to create 3D reconstruction models of the maxilla. Stereolithography data of dental implants and accessories were used to design a three-unit full zirconia bridge for the maxillary model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!