Complementary spectroscopy studies and potential activities of levan-type fructan produced by Bacillus paralicheniformis ND2.

Carbohydr Polym

National Institute of Oceanography and Fisheries (NIOF), Egypt; Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan. Electronic address:

Published: July 2023

This study aimed at the production of marine bacterial exopolysaccharides (EPS) as biodegradable and nontoxic biopolymers, competing the synthetic derivatives, with detailed structural and conformational analyses using spectroscopy techniques. Twelve marine bacterial bacilli were isolated from the seawater of Mediterranean Sea, Egypt, then screened for EPS production. The most potent isolate was identified genetically as Bacillus paralicheniformis ND2 by16S rRNA gene sequence of ~99 % similarity. Plackett-Burman (PB) design identified the optimization conditions of EPS production, which yielded the maximum EPS (14.57 g L) with 1.26-fold increase when compared to the basal conditions. Two purified EPSs namely NRF1 and NRF2 with average molecular weights (Mw¯) of 15.98 and 9.70 kDa, respectively, were obtained and subjected for subsequent analyses. FTIR and UV-Vis reflected their purity and high carbohydrate contents while EDX emphasized their neutral type. NMR identified the EPSs as levan-type fructan composed of β-(2-6)-glycosidic linkage as a main backbone, and HPLC explained that the EPSs composed of fructose. Circular dichroism (CD) suggested that NRF1 and NRF2 had identical structuration with a little variation from the EPS-NR. The EPS-NR showed antibacterial activity with the maximum inhibition against S. aureus ATCC 25923. Furthermore, all the EPSs revealed a proinflammatory action through dose-dependent increment of expression of proinflammatory cytokine mRNAs, IL-6, IL-1β and TNFα.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.120743DOI Listing

Publication Analysis

Top Keywords

levan-type fructan
8
bacillus paralicheniformis
8
paralicheniformis nd2
8
marine bacterial
8
eps production
8
nrf1 nrf2
8
complementary spectroscopy
4
spectroscopy studies
4
studies potential
4
potential activities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!