A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A computational study of cellulose regeneration: All-atom molecular dynamics simulations. | LitMetric

A computational study of cellulose regeneration: All-atom molecular dynamics simulations.

Carbohydr Polym

Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden. Electronic address:

Published: July 2023

Processing natural cellulose requires its dissolution and regeneration. It is known that the crystallinity of regenerated cellulose does not match that of native cellulose, and the physical and mechanical properties of regenerated cellulose can vary dependent on the technique applied. In this paper, we performed all-atom molecular dynamics simulations attempting to simulate the regeneration of order in cellulose. Cellulose chains display an affinity to align with one another on the nanosecond scale; single chains quickly form clusters, and clusters then interact to form a larger unit, but the end results still lack that abundance of order. Where aggregation of cellulose chains occurs, there is some resemblance of the 1-10 surfaces found in Cellulose II, with certain indication of 110 surface formation. Concentration and simulation temperature show an increase of aggregation, yet it appears that time is the major factor in reclaiming the order of "crystalline" cellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.120768DOI Listing

Publication Analysis

Top Keywords

cellulose
10
all-atom molecular
8
molecular dynamics
8
dynamics simulations
8
regenerated cellulose
8
cellulose chains
8
computational study
4
study cellulose
4
cellulose regeneration
4
regeneration all-atom
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!