Leather wastewater (LW) effluent is characterized by complex organic matter, high salinity, and poor biodegradability. To meet the discharge standards, LW effluent is often mixed with municipal wastewater (MW) before being treated at a leather industrial park wastewater treatment plant (LIPWWTP). However, whether this method efficiently removes the dissolved organic matter (DOM) from LW effluent (LWDOM) remains debatable. In this study, the transformation of DOM during full-scale treatment was revealed using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. LWDOM exhibited higher aromaticity and lower molecular weight than DOM in MW (MWDOM). The DOM properties in mixed wastewater (MixW) were similar to those in LWDOM and MWDOM. The MixW was treated using a flocculation/primary sedimentation tank (FL/PST), anoxic/oxic (A/O) process, secondary sedimentation tank (SST), flocculation/sedimentation tank, denitrification filter (FL/ST-DNF), and an ozonation contact reactor (O). The FL/PST unit preferentially removed the peptide-like compounds. The A/O-SST units had the highest removal efficiencies for dissolved organic carbon (DOC) (61.34 %) and soluble chemical oxygen demand (SCOD) (52.2 %). The FL/ST-DNF treatment removed the lignin-like compounds. The final treatment showed poor DOM mineralization efficiency. The correlation between water quality indices, spectral indices, and molecular-level parameters indicated that lignin-like compounds were strongly correlated with spectral indices and CHOS compounds considerably contributed to the SCOD and DOC. Although the effluent SCOD met the discharge standard, some refractory DOM from LW remained in the effluent. This study illustrates the composition and transformation of DOM and provides theoretical guidance for improving the current treatment processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163174 | DOI Listing |
Sci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO ≫ γ-MnOOH > MnO.
View Article and Find Full Text PDFPlant Soil
May 2024
Department of Geography, McGill University, Montreal, Canada.
Aims: Peat is used as a major ingredient of growing media in horticulture. Peat extracted from bogs can be acidic and low in nutrient availability and is therefore mixed with liming agents, nutrients, surfactants, perlite and so on. This study aims to estimate the rates at which raw peat and the modified peat ('growing media') decompose to release carbon dioxide (CO), to estimate the release of carbon (C) from liming agents and to estimate how peat biogeochemistry is changed.
View Article and Find Full Text PDFEnviron Res
December 2024
Xi'an Institute for Innovative Earth Environment Research, Institute of Earth Environment Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China.
The biological carbon pump (BCP) associated with aquatic photosynthesis in karst surface waters converts dissolved inorganic carbon (DIC) into organic carbon. In the context of global climate change, BCP could be an important carbon sink mechanism, ultimately regulating atmospheric carbon dioxide (CO) and mitigating climate change. Because of the high DIC and pH, and low dissolved CO [CO (aq)], the hydrochemical characteristics of karst surface water bodies cause C limitation in BCP efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!