Heat shock proteins 90 (Hsp90) are chaperones that promote the proper folding of other proteins under high temperature stress situations. Hsp90s are highly conserved and ubiquitous proteins, and in mammalian cells, they are localized in the cytoplasm, endoplasmic reticulum, and mitochondria. Cytoplasmic Hsp90 are named Hsp90α and Hsp90β and differ mainly in their expression pattern: Hsp90α is expressed under stress conditions, while Hsp90β is a constitutive protein. Structurally, both share the same characteristics by presenting three well-conserved domains, one of which, the N-terminal domain, has a binding site for ATP to which various drugs targeting this protein, including radicicol, can bind. The protein is mainly found in dimeric form and adopts different conformations depending on the presence of ligands, co-chaperones and client proteins. In this study, some aspects of structure and thermal unfolding of cytoplasmic human Hsp90 were analysed by infrared spectroscopy. The effect on Hsp90β of binding with a non-hydrolysable ATP analogue and radicicol was also examined. The results obtained showed that despite the high similarity in secondary structure the two isoforms exhibit substantial differences in their behaviour during thermal unfolding, as Hsp90α exhibits higher thermal stability, slower denaturation process and different event sequence during unfolding. Ligand binding strongly stabilizes Hsp90β and slightly modifies the secondary structure of the protein as well. Most likely, these structural and thermostability characteristics are closely related to the conformational cycling of the chaperone and its propensity to exist in monomer or dimer form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2023.109599DOI Listing

Publication Analysis

Top Keywords

thermal unfolding
12
human hsp90
8
behaviour thermal
8
secondary structure
8
despite structural
4
structural similarities
4
similarities cytosolic
4
cytosolic isoforms
4
isoforms human
4
hsp90
4

Similar Publications

Focusing on the mechanism of glycinin-soybean lipophilic protein hybrid gels: Effect of ultrasonic, subunit interactions, and formation process analysis.

Ultrason Sonochem

January 2025

Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China. Electronic address:

Heat facilitates aggregation and gel formation of soybean proteins. Ultrasonic reduces the size of protein aggregates. This study examined the impact of glycinin (11S) subunits on soybean lipophilic proteins (SLPs) gel formation and underlying mechanisms.

View Article and Find Full Text PDF

Insights into interaction mechanism between fibrinogen hydrolyzed peptides and myosin during gelation by molecular docking and molecular dynamic simulation.

Food Chem

January 2025

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China. Electronic address:

This study explored the role of fibrinogen hydrolyzed peptides in enhancing myosin thermal gelation properties. We investigated the impact of disrupted hydrophobic interactions and disulfide bonds on the characteristics of myosin-fibrinogen peptide composite gels using sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). Disrupted hydrophobic interactions led to decreased gel texture, water-holding capacity, rheological properties and irregular pore distribution, emphasizing their critical role in gel integrity.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

The thermodynamics of pressure-induced protein denaturation could so far not be directly compared with protein denaturation induced by temperature or chemical agents. Here, we provide a new cooperative model for pressure-induced protein denaturation that allows the quantitative comparison of all three denaturing processes based on their free energy, enthalpy, entropy, and cooperativity. As model proteins, we use apolipoprotein A-1 and lysozyme.

View Article and Find Full Text PDF

Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!