Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, quartz sand (QS) incorporated into a crosslinked chitosan-glutaraldehyde matrix (QS@Ch-Glu) was prepared and employed as an efficient adsorbent for the elimination of Orange G (OG) dye from water. The sorption process is adequately described by the pseudo-second order kinetic model and the Langmuir isotherm model with maximum adsorption capacities of 172.65, 188.18, and 206.65mg/g at 25, 35, and 45°C, respectively. A statistical physics model was adopted to elucidate the adsorption mechanism of OG on QS@Ch-Glu. Calculated thermodynamic factors revealed that the adsorption of OG is endothermic, spontaneous, and occurs via physical interactions. Overall, the proposed adsorption mechanism was based on electrostatic attractions, n-π stacking interaction, hydrogen bonding interaction, and Yoshida hydrogen bonding. The adsorption rate of QS@Ch-Glu was still above 95% even after 6 cycles of adsorption and desorption. Furthermore, QS@Ch-Glu demonstrated high efficiency in real water samples. All these findings demonstrate that QS@Ch-Glu is qualified for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!