Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders.

Drug Discov Today

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India. Electronic address:

Published: June 2023

Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response, biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2023.103583DOI Listing

Publication Analysis

Top Keywords

sirt3 mitochondrial
8
neurodegenerative disorders
8
mitochondrial
5
role sirt3
4
mitochondrial biology
4
biology therapeutic
4
therapeutic implications
4
implications neurodegenerative
4
disorders sirtuin
4
sirtuin sirt3
4

Similar Publications

Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence.

View Article and Find Full Text PDF

Brazilin alleviates acute lung injury via inhibition of ferroptosis through the SIRT3/GPX4 pathway.

Apoptosis

December 2024

Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.

Ferroptosis is a novel type of programmed cell death dependent on iron and is characterized by the accumulation of lipid peroxides, which is involved in acute lung injury (ALI). Brazilin, an organic compound known for its potent antioxidant and anti-inflammatory properties, has not been thoroughly studied for its potential impact on lipopolysaccharide (LPS)-induced ALI. Here, we found that pretreatment of brazilin mitigated LPS-induced lung injury and inflammation by inhibiting mitochondrial oxidative stress and ferroptosis, both in vivo and in vitro.

View Article and Find Full Text PDF

Existing evidence indicates that exercise training can enhance neural function by regulating mitochondrial quality control (MQC), which can be impaired by cerebral ischemia, and that sirtuin-3 (SIRT3), a protein localized in mitochondria, is crucial in maintaining mitochondrial functions. However, the relationship among exercise training, SIRT3, and MQC after cerebral ischemia remains obscure. This study attempted to elucidate the relationship among exercise training, SIRT3 and MQC after cerebral ischemia in rats.

View Article and Find Full Text PDF

This study investigated the mechanism by which ginsenoside Rg_(1 )attenuates hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes by inhibiting the acetylation of ATP synthase subunit alpha(ATP5A1) through silent information regulator 3(SIRT3). In this study, an H/R injury model was constructed by hypoxia for 6 h and reoxygenation for 2 h in HL-1 cardiomyocytes. First, the optimal effective concentration of ginsenoside Rg_1 was determined using a cell viability assay kit.

View Article and Find Full Text PDF

Silent mating-type information regulation 2 homology 3 (SIRT3) is a member of the sirtuins family expressed in mitochondria performs deacetylation of metabolic enzymes and promotes longevity. 7-hydroxy-3-(4'-methoxyphenyl) coumarin (C12) is a small molecule first ever known for its direct activation of SIRT3. SIRT3 performs its function by balancing the redox system by activating manganese superoxide dismutase (MnSOD) and 8-Oxoguanine glycosylase (OGG1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!