A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. | LitMetric

Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy.

Cell Stem Cell

Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA. Electronic address:

Published: April 2023

AI Article Synopsis

  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show potential as a treatment for heart attacks, but they often cause temporary irregular heartbeats known as engraftment arrhythmias (EAs).
  • Researchers believe these EAs are due to the immature nature of hPSC-CMs, as they exhibit pacemaker-like activity influenced by specific ion channels.
  • By modifying the ion channels in these stem cells to reduce automaticity, the study demonstrated that these engineered cells can be safely transplanted into pig hearts without causing sustained EAs, supporting the idea that improving the electrophysiological properties of hPSC-CMs could enhance their use in heart therapies.

Article Abstract

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283080PMC
http://dx.doi.org/10.1016/j.stem.2023.03.010DOI Listing

Publication Analysis

Top Keywords

ventricular arrhythmias
8
transplanted in vivo
8
hpsc-cms
6
gene editing
4
editing prevent
4
prevent ventricular
4
arrhythmias associated
4
associated cardiomyocyte
4
cardiomyocyte cell
4
cell therapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!