AI Article Synopsis

  • * The paper introduces DGNet, a deep neural network leveraging dual graph pyramids to efficiently handle irregular mesh structures, enhancing feature propagation and local geometric information gathering.
  • * Experimental results show that DGNet excels in tasks like shape analysis and scene understanding, outperforming existing methods on benchmarks, with resources available for further exploration.

Article Abstract

Deep neural networks (DNNs) have been widely used for mesh processing in recent years. However, current DNNs can not process arbitrary meshes efficiently. On the one hand, most DNNs expect 2-manifold, watertight meshes, but many meshes, whether manually designed or automatically generated, may have gaps, non-manifold geometry, or other defects. On the other hand, the irregular structure of meshes also brings challenges to building hierarchical structures and aggregating local geometric information, which is critical to conduct DNNs. In this paper, we present DGNet, an efficient, effective and generic deep neural mesh processing network based on dual graph pyramids; it can handle arbitrary meshes. First, we construct dual graph pyramids for meshes to guide feature propagation between hierarchical levels for both downsampling and upsampling. Second, we propose a novel convolution to aggregate local features on the proposed hierarchical graphs. By utilizing both geodesic neighbors and euclidean neighbors, the network enables feature aggregation both within local surface patches and between isolated mesh components. Experimental results demonstrate that DGNet can be applied to both shape analysis and large-scale scene understanding. Furthermore, it achieves superior performance on various benchmarks, including ShapeNetCore, HumanBody, ScanNet and Matterport3D. Code and models will be available at https://github.com/li-xl/DGNet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3257035DOI Listing

Publication Analysis

Top Keywords

dual graph
12
graph pyramids
12
neural networks
8
based dual
8
deep neural
8
mesh processing
8
arbitrary meshes
8
meshes
6
mesh
4
mesh neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!