With the increasing demand of compressing and streaming 3D point clouds under constrained bandwidth, it has become ever more important to accurately and efficiently determine the quality of compressed point clouds, so as to assess and optimize the quality-of-experience (QoE) of end users. Here we make one of the first attempts developing a bitstream-based no-reference (NR) model for perceptual quality assessment of point clouds without resorting to full decoding of the compressed data stream. Specifically, we first establish a relationship between texture complexity and the bitrate and texture quantization parameters based on an empirical rate-distortion model. We then construct a texture distortion assessment model upon texture complexity and quantization parameters. By combining this texture distortion model with a geometric distortion model derived from Trisoup geometry encoding parameters, we obtain an overall bitstream-based NR point cloud quality model named streamPCQ. Experimental results show that the proposed streamPCQ model demonstrates highly competitive performance when compared with existing classic full-reference (FR) and reduced-reference (RR) point cloud quality assessment methods with a fraction of computational cost.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2023.3253252DOI Listing

Publication Analysis

Top Keywords

point clouds
16
quality assessment
12
perceptual quality
8
compressed point
8
texture complexity
8
quantization parameters
8
texture distortion
8
distortion model
8
point cloud
8
cloud quality
8

Similar Publications

Cross-Modal Collaboration and Robust Feature Classifier for Open-Vocabulary 3D Object Detection.

Sensors (Basel)

January 2025

The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.

The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.

View Article and Find Full Text PDF

Segment Any Leaf 3D: A Zero-Shot 3D Leaf Instance Segmentation Method Based on Multi-View Images.

Sensors (Basel)

January 2025

School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.

Exploring the relationships between plant phenotypes and genetic information requires advanced phenotypic analysis techniques for precise characterization. However, the diversity and variability of plant morphology challenge existing methods, which often fail to generalize across species and require extensive annotated data, especially for 3D datasets. This paper proposes a zero-shot 3D leaf instance segmentation method using RGB sensors.

View Article and Find Full Text PDF

Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g.

View Article and Find Full Text PDF

Terrestrial laser scanners (TLS) are portable dimensional measurement instruments used to obtain 3D point clouds of objects in a scene. While TLSs do not require the use of cooperative targets, they are sometimes placed in a scene to fuse or compare data from different instruments or data from the same instrument but from different positions. A contrast target is an example of such a target; it consists of alternating black/white squares that can be printed using a laser printer.

View Article and Find Full Text PDF

A Review of CNN Applications in Smart Agriculture Using Multimodal Data.

Sensors (Basel)

January 2025

Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.

This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!