The decellularized human umbilical artery (HUA) is considered as a promising option for small-diameter, tissue-engineered vascular grafts (TEVGs). Our previous study showed that the HUA bears a thin, watertight lining on its outermost abluminal surface. Removal of this abluminal lining layer improves efficacy of the perfusion-assisted decellularization of the HUA and increases its compliance. As stress across the wall is believed to affect growth and remodeling of the TEVG, it is imperative to mechanically characterize the HUA using thick-walled models. Combining inflation experiments and computational methods, we investigate the mechanical properties of the HUA before and after the abluminal lining removal to examine the HUA's wall mechanics. The inflation tests of five HUAs were performed to obtain the mechanical and geometrical response of the vessel wall before and after the lining layer removal. Using nonlinear hyperelastic models, the same responses are obtained computationally using the thick-walled models. The experimental data are incorporated into the computational models to estimate the mechanical and orientation parameters of the fibers and isotropic matrix of different layers in the HUAs. The parameter fitting of both thick-walled models (before and after the abluminal lining removal) results in most of the R-squared values for measuring the goodness of fitting to be over 0.90 for all samples. The compliance of the HUA increases from a mean value of 2.60% per 100 mmHg before the removal of the lining to a mean value of 4.21% per 100 mmHg after the removal. The results reveal that, although the abluminal lining is thin, it is stiff and capable of supporting majority of the high luminal pressure, and that the inner layer is far less stressed than the abluminal lining. Computational simulations also show that removal of the abluminal lining increases the circumferential wall stress by up to 280 kPa under the in vivo luminal pressure. The integrated computational and experimental approaches provide more accurate estimates of the material behaviors of HUAs employed in grafts and, in turn, the study enhances our understanding of interactions between the graft and the native vessel on vascular growth and remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.105811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!