Effect of 3D printing system and post-curing atmosphere on micro- and nano-wear of additive-manufactured occlusal splint materials.

J Mech Behav Biomed Mater

Department of Biomaterials Science, Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, Turku, 20520, Finland.

Published: June 2023

Although additive manufacturing has been widely applied for occlusal splint (OS) fabrication, it is still unclear whether 3D printing system and post-curing atmosphere would play a role in the wear resistance of additive-manufactured OS. Therefore, the aim of this study was to evaluate the effect of 3D printing system (liquid crystal display (LCD) and digital light processing (DLP)) and post-curing atmosphere (air and nitrogen gas (N)) on the wear resistance of hard and soft OS materials for additive-manufactured OSs (KeySplint® Hard and Soft). The evaluated properties were microwear (by two-body wear test) and nano-wear resistances (by nanoindentation wear test) as well as flexural strength and flexural modulus (by three-point bending test), surface microhardness (by Vickers hardness test), and nanoscale elastic modulus (reduced elastic modulus) and nano surface hardness (by nanoindentation test). For the hard material, the surface microhardness, microwear resistance, reduced elastic modulus, nano surface hardness, and nano-wear resistance were significantly affected by the printing system (p < 0.05), while all the evaluated properties except flexural modulus were significantly affected by the post-curing atmosphere (p < 0.05). Meanwhile, both the printing system and post-curing atmosphere significantly affected all the evaluated properties (p < 0.05). The specimens additive-manufactured by DLP printer tended to show higher wear resistance in the hard material groups and lower wear resistance in the soft material groups when compared to those by LCD printer. The post-curing at N atmosphere significantly enhanced the microwear resistance of hard material groups additive-manufactured by the DLP printer (p < 0.05) and soft material groups additive-manufactured by the LCD printer (p < 0.01), while it significantly enhanced the nano-wear resistance of both hard and soft material groups regardless of the printing system (p < 0.01). It can be concluded that 3D printing system and post-curing atmosphere affect the micro- and nano-wear resistance of tested additively manufactured OS materials. In addition, it can be also concluded that the optical printing system providing higher wear resistance depends on the material type, and using nitrogen gas as a protection gas during post-curing enhances the wear resistance of tested materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.105799DOI Listing

Publication Analysis

Top Keywords

printing system
16
post-curing atmosphere
12
elastic modulus
12
system post-curing
8
occlusal splint
8
wear resistance
8
hard soft
8
wear test
8
surface microhardness
8
reduced elastic
8

Similar Publications

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.

View Article and Find Full Text PDF

Digital learning resources are in increasing demand, especially in the light of the planned reform of the medical licensing regulations for 2028. In a pilot project, we digitised and evaluated a logbook for students in their practical year (PJ).The aim of this study is to evaluate the digital and non-digital PJ logbooks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!