In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124506 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
Electrically conducting 2D metal-organic frameworks (MOFs) with hexagonal 2D lattices like other 2D van der Waals stacked materials are attracting increasing interest. The conductivity can be effectively regulated through electronic structure adjustment thanks to the chemical and physical flexibility and adjustability of MOFs. In this regard, through a simple and rapid electrochemical method, 2D conductive iron-quinoid MOFs were synthesized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), Joint International Research Laboratory of Climate and Environment Change (ILCEC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
The high cost of hydrogen production by water electrolysis severely challenges its commercial application. It is highly desirable to develop efficient electrocatalysts and innovative electrolytic cells. Introducing additional metal nodes to form bimetallic metal-organic framework (MOF) is a simple, feasible strategy to overcome the poor electrocatalytic performance of single-metal MOF.
View Article and Find Full Text PDFChemistryOpen
October 2024
Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials.
View Article and Find Full Text PDFJ Environ Sci (China)
March 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:
Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!