Bimetal MOFs catalyzed Fenton-like reaction for dual-mode detection of thiamphenicol.

Talanta

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Published: July 2023

In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124506DOI Listing

Publication Analysis

Top Keywords

bimetal mofs
12
detection thiamphenicol
8
mofs catalyzed
4
catalyzed fenton-like
4
fenton-like reaction
4
reaction dual-mode
4
dual-mode detection
4
thiamphenicol work
4
work simple
4
simple ultrasonic
4

Similar Publications

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Electrochemical Synthesis and Conductivity Fine Tuning of the 2D Iron-Quinoid Metal-Organic Framework.

ACS Appl Mater Interfaces

December 2024

Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.

Electrically conducting 2D metal-organic frameworks (MOFs) with hexagonal 2D lattices like other 2D van der Waals stacked materials are attracting increasing interest. The conductivity can be effectively regulated through electronic structure adjustment thanks to the chemical and physical flexibility and adjustability of MOFs. In this regard, through a simple and rapid electrochemical method, 2D conductive iron-quinoid MOFs were synthesized.

View Article and Find Full Text PDF

Enhancing Hydrogen Evolution Reaction through the Improved Mass Transfer and Charge Transfer by Bimetal Nodes.

ACS Appl Mater Interfaces

November 2024

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Engineering and Technology Research Center of Environmental Cleaning Materials (ECM), Joint International Research Laboratory of Climate and Environment Change (ILCEC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.

The high cost of hydrogen production by water electrolysis severely challenges its commercial application. It is highly desirable to develop efficient electrocatalysts and innovative electrolytic cells. Introducing additional metal nodes to form bimetallic metal-organic framework (MOF) is a simple, feasible strategy to overcome the poor electrocatalytic performance of single-metal MOF.

View Article and Find Full Text PDF

In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials.

View Article and Find Full Text PDF

2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity.

J Environ Sci (China)

March 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!