Effects and mechanisms of Al substitution on the catalytic ability of ferrihydrite for Mn(II) oxidation and the subsequent oxidation and immobilization of coexisting Cr(III).

J Hazard Mater

Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

Published: June 2023

Al(III)-substituted ferrihydrite existing in natural soils is more common than pure ferrihydrite; however, the effects of Al(III) incorporation on the interaction between ferrihydrite, Mn(II) catalytic oxidation, and coexisting transition metal (e.g., Cr(III)) oxidation remain elusive. To address this knowledge gap, Mn(II) oxidation on synthetic Al(III)-incorporated ferrihydrite and Cr(III) oxidation on the previously formed Fe-Mn binaries were investigated in this study via batch kinetic studies combined with various spectroscopic analyses. The results indicate that Al substitution in ferrihydrite barely changes its morphology, specific surface area, or the types of surface functional groups, but increases the total amount of hydroxyl on the ferrihydrite surface and enhances its adsorption capacity toward Mn(II). Conversely, Al substitution inhibits electron transfer in ferrihydrite, thereby weakening its electrochemical catalysis on Mn(II) oxidation. Thus, the contents of Mn(III/IV) oxides with higher Mn valence states decrease, whereas those of lower Mn valence states increase. Furthermore, the number of hydroxyl radicals formed during Mn(II) oxidation on ferrihydrite decreases. These inhibitions of Al substitution on Mn(II) catalytic oxidation subsequently cause decreased Cr(III) oxidation and poor Cr(VI) immobilization. Additionally, Mn(III) in Fe-Mn binaries is confirmed to play a dominant role in Cr(III) oxidation. This research facilitates sound decision-making regarding the management of Cr-contaminated soil environments enriched with Fe and Mn.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131351DOI Listing

Publication Analysis

Top Keywords

mnii oxidation
16
criii oxidation
16
oxidation
11
ferrihydrite
9
ferrihydrite mnii
8
mnii catalytic
8
catalytic oxidation
8
fe-mn binaries
8
valence states
8
mnii
7

Similar Publications

Mechanisms of CO oxidation on high entropy spinels.

Phys Chem Chem Phys

January 2025

CNR-Istituto Officina dei Materiali, TASC, Trieste, Italy.

The CO oxidation reaction on (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O and (Cr,Mn,Fe,Co,Ni)O high entropy spinel oxides was studied for what concerns its mechanism by means of soft X-ray absorption spectroscopy. In the (Cr,Mn,Fe,Co,Ni)O high entropy spinel, CO oxidation starts at 150 °C, and complete conversion to CO is obtained at 300 °C. For the (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O spinel oxides, in contrast, the reaction starts at 200 °C, and complete conversion needs temperatures of the order of 350 °C.

View Article and Find Full Text PDF

Microbial manganese redox cycling drives co-removal of nitrate and ammonium.

J Environ Manage

January 2025

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:

Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.

View Article and Find Full Text PDF

Multi-effect synergistic induction of unsaturated MnO on sandy sediment for enhanced manganese adsorption and byproduct resource recovery in solar evaporation.

J Hazard Mater

January 2025

School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China. Electronic address:

The efficient removal of Mn(II) from wastewater is crucial for safeguarding water quality, yet existing adsorbents face significant challenges, including high costs, poor resistance to ionic interference, and scalability limitations. This study addresses these challenges by utilizing abundant natural sandy sediment (SS) as a substrate to load unsaturated MnO via in-situ oxidation, creating a novel adsorbent (MOSS). MOSS exhibits a remarkable Mn(II) adsorption capacity of 1.

View Article and Find Full Text PDF

Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.

View Article and Find Full Text PDF

Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate.

J Hazard Mater

December 2024

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO ≫ γ-MnOOH > MnO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!