Light field imaging can capture both the intensity information and the direction information of light rays. It naturally enables a six-degrees-of-freedom viewing experience and deep user engagement in virtual reality. Compared to 2D image assessment, light field image quality assessment (LFIQA) needs to consider not only the image quality in the spatial domain but also the quality consistency in the angular domain. However, there is a lack of metrics to effectively reflect the angular consistency and thus the angular quality of a light field image (LFI). Furthermore, the existing LFIQA metrics suffer from high computational costs due to the excessive data volume of LFIs. In this paper, we propose a novel concept of "anglewise attention" by introducing a multihead self-attention mechanism to the angular domain of an LFI. This mechanism better reflects the LFI quality. In particular, we propose three new attention kernels, including anglewise self-attention, anglewise grid attention, and anglewise central attention. These attention kernels can realize angular self-attention, extract multiangled features globally or selectively, and reduce the computational cost of feature extraction. By effectively incorporating the proposed kernels, we further propose our light field attentional convolutional neural network (LFACon) as an LFIQA metric. Our experimental results show that the proposed LFACon metric significantly outperforms the state-of-the-art LFIQA metrics. For the majority of distortion types, LFACon attains the best performance with lower complexity and less computational time.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3247069DOI Listing

Publication Analysis

Top Keywords

light field
20
quality assessment
8
assessment light
8
field image
8
image quality
8
consistency angular
8
angular domain
8
lfiqa metrics
8
attention kernels
8
quality
6

Similar Publications

Deep learning has achieved significant success in the field of defect detection; however, challenges remain in detecting small-sized, densely packed parts under complex working conditions, including occlusion and unstable lighting conditions. This paper introduces YOLOv8-n as the core network to propose VEE-YOLO, a robust and high-performance defect detection model. Firstly, GSConv was introduced to enhance feature extraction in depthwise separable convolution and establish the VOVGSCSP module, emphasizing feature reusability for more effective feature engineering.

View Article and Find Full Text PDF

[Personalized profiling in the field of senology].

Radiologie (Heidelb)

January 2025

Universitätsklinikum Erlangen, Frauenklinik, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 21-23, 91054, Erlangen, Deutschland.

Background: The concept of personalized medicine is becoming increasingly important. The possibilities of diagnostics include not only genetic and molecular tumor profiles, but also the use of precise and individual imaging techniques.

Objectives: The development and implementation of suitable diagnostic procedures with high sensitivity and specificity, which are at the same time tailored to the individual risk factors and biological characteristics of the patient, remain a challenge.

View Article and Find Full Text PDF

Imaging the entire cardiomyocyte network in entire small animal hearts at single cell resolution is a formidable challenge. Optical microscopy provides sufficient contrast and resolution in 2d, however fails to deliver non-destructive 3d reconstructions with isotropic resolution. It requires several invasive preparation steps, which introduce structural artefacts, namely dehydration, physical slicing and staining, or for the case of light sheet microscopy also clearing of the tissue.

View Article and Find Full Text PDF

Anatomical and functional changes after internal limiting membrane peeling.

Surv Ophthalmol

January 2025

Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States. Electronic address:

Internal limiting membrane (ILM) peeling has been an acceptable step in vitrectomy surgeries for various retinal diseases such as macular hole, chronic macular edema following epiretinal membrane (ERM), and vitreoretinal traction. Despite all the benefits, this procedure has some side effects, which may lead to structural damage and functional vision loss. Light and dye toxicity may induce reversible and irreversible retina damage, which will be observed in postoperative optical coherence tomography scans.

View Article and Find Full Text PDF

Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO-CuO hybrid promotes photocatalytic hydrogen production.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!