Electroencephalography (EEG) signals classification is essential for the brain-computer interface (BCI). Recently, energy-efficient spiking neural networks (SNNs) have shown great potential in EEG analysis due to their ability to capture the complex dynamic properties of biological neurons while also processing stimulus information through precisely timed spike trains. However, most existing methods do not effectively mine the specific spatial topology of EEG channels and temporal dependencies of the encoded EEG spikes. Moreover, most are designed for specific BCI tasks and lack some generality. Hence, this study presents a novel SNN model with the customized spike-based adaptive graph convolution and long short-term memory (LSTM), termed SGLNet, for EEG-based BCIs. Specifically, we first adopt a learnable spike encoder to convert the raw EEG signals into spike trains. Then, we tailor the concepts of the multi-head adaptive graph convolution to SNN so that it can make good use of the intrinsic spatial topology information among distinct EEG channels. Finally, we design the spike-based LSTM units to further capture the temporal dependencies of the spikes. We evaluate our proposed model on two publicly available datasets from two representative fields of BCI, notably emotion recognition, and motor imagery decoding. The empirical evaluations demonstrate that SGLNet consistently outperforms existing state-of-the-art EEG classification algorithms. This work provides a new perspective for exploring high-performance SNNs for future BCIs with rich spatiotemporal dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3246989DOI Listing

Publication Analysis

Top Keywords

adaptive graph
12
graph convolution
12
spiking neural
8
eeg signals
8
spike trains
8
spatial topology
8
eeg channels
8
temporal dependencies
8
eeg
7
neural network
4

Similar Publications

Synergistic integration of brain networks and time-frequency multi-view feature for sleep stage classification.

Health Inf Sci Syst

December 2025

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.

For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.

View Article and Find Full Text PDF

SecEdge: A novel deep learning framework for real-time cybersecurity in mobile IoT environments.

Heliyon

January 2025

Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11633, Saudi Arabia.

The rapid growth of Internet of Things (IoT) devices presents significant cybersecurity challenges due to their diverse and resource-constrained nature. Existing security solutions often fall short in addressing the dynamic and distributed environments of IoT systems. This study aims to propose a novel deep learning framework, SecEdge, designed to enhance real-time cybersecurity in mobile IoT environments.

View Article and Find Full Text PDF

Purpose: To develop a rapid, high-resolution and distortion-free quantitative $R_{2}^{*}$ mapping technique for fetal brain at 3 T.

Methods: A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, $R_{2}^{*}$ and $B_{0}$ field maps directly from the acquired k-space data.

View Article and Find Full Text PDF

Network characteristics of comorbid symptoms in alcohol use disorder.

Ann Med

December 2025

School of Special Education and Rehabilitation, BinZhou Medical University, Yantai, China.

Background: Individuals with alcohol use disorder (AUD) often experience symptoms such as anxiety, depression, and decreased sleep quality. Although these are not diagnostic criteria, they may increase dependence risk and complicate treatment. This study aims to analyze comorbidities and their complex relationships in AUD patients through epidemiological surveys and network analysis.

View Article and Find Full Text PDF

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!