In fringe projection profilometry (FPP) based on temporal phase unwrapping (TPU), reducing the number of projecting patterns has become one of the most important works in recent years. To remove the 2π ambiguity independently, this paper proposes a TPU method based on unequal phase-shifting code. Wrapped phase is still calculated from N-step conventional phase-shifting patterns with equal phase-shifting amount to guarantee the measuring accuracy. Particularly, a series of different phase-shifting amounts relative to the first phase-shifting pattern are set as codewords, and encoded to different periods to generate one coded pattern. When decoding, Fringe order with a large number can be determined from the conventional and coded wrapped phases. In addition, we develop a self-correction method to eliminate the deviation between the edge of fringe order and the 2π discontinuity. Thus, the proposed method can achieve TPU but need to only project one additional coded pattern (e. g. 3+1), which can significantly benefit dynamic 3D shape reconstruction. The theoretical and experimental analysis verify that the proposed method performs high robustness on the reflectivity of the isolated object while ensuring the measuring speed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2023.3244650DOI Listing

Publication Analysis

Top Keywords

temporal phase
8
phase unwrapping
8
based unequal
8
unequal phase-shifting
8
phase-shifting code
8
coded pattern
8
fringe order
8
proposed method
8
phase-shifting
6
unwrapping based
4

Similar Publications

Objective: We investigated the construct validity, responsiveness, and interpretability of the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI) to determine its usefulness in measuring the functional level of gait.

Patients And Methods: This was a prospective observational study following the checklist of the Consensus-Based Standards for Selecting Health Measurement Instruments. The SCI-FAI consists of three items: Gait Parameter, Assistive Devices, and Temporal.

View Article and Find Full Text PDF

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Data on dissolved phase water concentrations of polychlorinated biphenyls (PCBs) from 32 locations across the U.S. were compiled from reports, Web sites, and peer-reviewed papers, spanning 1979-2020, resulting in 5132 individual samples.

View Article and Find Full Text PDF

High-resolution phase-contrast 3D imaging using nano-holotomography typically requires collecting multiple tomograms at varying sample-to-detector distances, usually 3 to 4. This multi-distance approach limits temporal resolution, making it impractical for studies. Moreover, shifting the sample complicates reconstruction, requiring precise alignment, registration, and interpolation to correct for shift-dependent magnification on the detector.

View Article and Find Full Text PDF

This study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!