Structural moiré superstructures arising from two competing lattices may lead to unexpected electronic behavior. Sb is predicted to show thickness-dependent topological properties, providing potential applications for low-energy-consuming electronic devices. Here we successfully synthesize ultrathin Sb films on semi-insulating InSb(111)A. Despite the covalent nature of the substrate, which has dangling bonds on the surface, we prove by scanning transmission electron microscopy that the first layer of Sb atoms grows in an unstrained manner. Rather than compensating for the lattice mismatch of -6.4% by structural modifications, the Sb films form a pronounced moiré pattern as we evidence by scanning tunneling microscopy. Our model calculations assign the moiré pattern to a periodic surface corrugation. In agreement with theoretical predictions, irrespective of the moiré modulation, the topological surface state known on a thick Sb film is experimentally confirmed to persist down to small film thicknesses, and the Dirac point shifts toward lower binding energies with a decrease in Sb thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c04974DOI Listing

Publication Analysis

Top Keywords

moiré pattern
12
moiré
5
pattern formation
4
formation epitaxial
4
epitaxial growth
4
growth covalent
4
covalent substrate
4
substrate insb111a
4
insb111a structural
4
structural moiré
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!