Fuzzy neural networks (FNNs) have been very successful at handling uncertainty in data using fuzzy mappings and if-then rules. However, they suffer from generalization and dimensionality issues. Although deep neural networks (DNNs) represent a step toward processing high-dimensional data, their capacity to address data uncertainty is limited. Furthermore, deep learning algorithms designed to improve robustness are either time consuming or yield unsatisfactory performance. In this article, we propose a robust fuzzy neural network (RFNN) to overcome these problems. The network contains an adaptive inference engine that is capable of handling samples with high-level uncertainty and high dimensions. Unlike traditional FNNs that use a fuzzy AND operation to calculate the firing strength for each rule, our inference engine is able to learn the firing strength adaptively. It also further processes the uncertainty in membership function values. Taking advantage of the learning ability of neural networks, the acquired fuzzy sets can be learned from training inputs automatically to cover the input space well. Furthermore, the consequent layer uses neural network structures to enhance the reasoning ability of the fuzzy rules when dealing with complex inputs. Experiments on a range of datasets show that RFNN delivers state-of-the-art accuracy even at very high levels of uncertainty. Our code is available online. https://github.com/leijiezhang/RFNN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2023.3241170 | DOI Listing |
Math Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.
Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Operational Research Center in Healthcare, Near East University, Nicosia, Turkey.
Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.
Many existing control techniques proposed in the literature tend to overlook faults and physical limitations in the systems, which significantly restricts their applicability to practical, real-world systems. Consequently, there is an urgent necessity to advance the control and synchronization of such systems in real-world scenarios, specifically when faced with the challenges posed by faults and physical limitations in their control actuators. Motivated by this, our study unveils an innovative control approach that combines a neural network-based sliding mode algorithm with fuzzy logic systems to handle nonlinear systems.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India. Electronic address:
This research work focuses on developing an advanced diagnostic method for thyroid nodules using ultrasonography images. The core idea revolves around the observation that the presence and amount of calcium flecks in thyroid nodules can indicate their severity, potentially leading to severe thyroid cancer. A novel technique, named Bilateral Mean Clustering Strategy (Bi-MCS), is proposed, combining the strengths of Fuzzy C mean and K-mean clustering approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!