Interfaces of van der Waals (vdW) materials, such as graphite and hexagonal boron nitride (hBN), exhibit low-friction sliding due to their atomically flat surfaces and weak vdW bonding. We demonstrate that microfabricated gold also slides with low friction on hBN. This enables the arbitrary post-fabrication repositioning of device features both at ambient conditions and in situ to a measurement cryostat. We demonstrate mechanically reconfigurable vdW devices where device geometry and position are continuously tunable parameters. By fabricating slidable top gates on a graphene-hBN device, we produce a mechanically tunable quantum point contact where electron confinement and edge-state coupling can be continuously modified. Moreover, we combine in situ sliding with simultaneous electronic measurements to create new types of scanning probe experiments, where gate electrodes and even entire vdW heterostructure devices can be spatially scanned by sliding across a target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081839 | PMC |
http://dx.doi.org/10.1126/sciadv.adf9558 | DOI Listing |
ACS Nano
December 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Angew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, The State Key Laboratory of Structural Chemistry, 155 Yangqiao Road West, 350002, Fuzhou, CHINA.
Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.
View Article and Find Full Text PDFAnal Chem
December 2024
Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
In ambient mass spectrometry, the performance in direct in situ analysis applications has been hindered by the lack of efficient ion-transferring technique between the atmosphere pressure ionization source and the mass analyzer. Building upon the hybrid concept of a stack ring ion guide and multipole ion guide, this study proposes the concept of a reconfigurable twisted dipole ion guide (TDIG) that enables flexible ion transfer between atmosphere and vacuum. Initially, theoretical and numerical studies were conducted to understand the basic ion confining principle of the twisted dipole ion guide, revealing its unique merits in long-distance flexible ion transmission.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.
Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tianjin University, Materials Science and Engineering, CHINA.
Multispectral camouflage materials play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!