Superimposed on long-term late Paleocene-early Eocene warming (~59 to 52 million years ago), Earth's climate experienced a series of abrupt perturbations, characterized by massive carbon input into the ocean-atmosphere system and global warming. Here, we examine the three most punctuated events of this period, the Paleocene-Eocene Thermal Maximum and Eocene Thermal Maximum 2 and 3, to probe whether they were initiated by climate-driven carbon cycle tipping points. Specifically, we analyze the dynamics of climate and carbon cycle indicators acquired from marine sediments to detect changes in Earth system resilience and to identify positive feedbacks. Our analyses suggest a loss of Earth system resilience toward all three events. Moreover, dynamic convergent cross mapping reveals intensifying coupling between the carbon cycle and climate during the long-term warming trend, supporting increasingly dominant climate forcing of carbon cycle dynamics during the Early Eocene Climatic Optimum when these recurrent global warming events became more frequent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081840 | PMC |
http://dx.doi.org/10.1126/sciadv.ade5466 | DOI Listing |
Poult Sci
December 2024
dsm-firmenich, Kaiseraugst, Switzerland.
A total of 1,436,000 Ross 380 AP broiler chicks were included in the experiment, which was conducted in two cycles with 20 houses per cycle and 35,900 birds per house. The objective was to evaluate, under field conditions, the impact of a precision biotic (PB) on the growth performance and cecal microbiome of broiler chickens, in comparison to enzymatically hydrolyzed yeast (EHY) and butyrate (BT) in an antibiotic-free diet. Each cycle consisted of six (6) houses under PB supplementation, and 14 houses under the regular dietary program used by the integration.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.
Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).
View Article and Find Full Text PDFCancer Res
January 2025
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES OF AMERICA.
Converting CO2 to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO2 conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!