Absorption of ultraviolet radiation (UVR) by DNA leads to the predominant formation of cyclobutane pyrimidine dimers (CPD). Since those CPD are responsible for the driver mutations found in skin cancers, their efficient repair is critical. We previously showed that pre-stimulation of fibroblasts with chronic low doses of UVB (CLUV) increases CPD repair efficiency. Since skin cancers are not arising from dermal fibroblasts, this observation is not directly relevant to cutaneous carcinogenesis. We have now exposed HaCaT keratinocytes to a CLUV irradiation protocol to determine whether this pre-stimulation influences CPD removal rate. Similar to fibroblasts, CLUV treatment leads to the accumulation of residual CPD in keratinocytes, which are not repaired but rather tolerated and diluted through DNA replication. In contrast to fibroblasts, in keratinocytes we find that CLUV pre-treatment reduces CPD removal of newly generated damage without inducing a higher sensitivity to UVR-induced cell death. Using our experimental data, we derived a theoretical model to predict CPD induction, dilution and repair that occur in keratinocytes when chronically UVB-irradiated. Altogether, these results suggest that the accumulation of unrepaired CPD and the reduction in repair efficiency caused by chronic UVB exposure might lead to an increase in skin cancer driver mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081739 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283572 | PLOS |
Updates Surg
January 2025
1St Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 5462, Thessaloniki, Greece.
The unprecedented technical and technological evolution in thyroid surgery has labelled it as an extremely safe and efficient procedure, and indeed "typifies perhaps better than any other operation the supreme triumph of the surgeon's art."-William Halsted, 1852-1922. Surgeon's experience reflected by annual case load is the most important denominator in thyroid surgery.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China. Electronic address:
Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!