Structural changes in chromosomes driven by multiple condensin motors during mitosis.

Cell Rep

Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:

Published: April 2023

AI Article Synopsis

Article Abstract

We create a computational framework that utilizes loop extrusion (LE) by multiple condensin I/II motors to predict changes in chromosome organization during mitosis. The theory accurately reproduces the experimental contact probability profiles for the mitotic chromosomes in HeLa and DT40 cells. The LE rate is smaller at the start of mitosis and increases as the cells approach metaphase. Condensin II-mediated mean loop size is about six times larger than loops because of condensin I. The loops, which overlap each other, are stapled to a central dynamically changing helical scaffold formed by the motors during the LE process. A polymer physics-based data-driven method that uses the Hi-C contact map as the only input shows that the helix is characterized as random helix perversions (RHPs) in which the handedness changes randomly along the scaffold. The theoretical predictions, which are testable using imaging experiments, do not contain any parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.112348DOI Listing

Publication Analysis

Top Keywords

multiple condensin
8
structural changes
4
changes chromosomes
4
chromosomes driven
4
driven multiple
4
condensin
4
condensin motors
4
motors mitosis
4
mitosis create
4
create computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!