During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551051PMC
http://dx.doi.org/10.1016/j.celrep.2023.112338DOI Listing

Publication Analysis

Top Keywords

matrix stiffness
20
tumor cell
16
cell intravasation
16
stiffness regulates
12
regulates tumor
12
alternative splicing
12
splicing mena
12
matrix stiffening
12
matrix
8
intravasation
8

Similar Publications

To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.

View Article and Find Full Text PDF

Thermomechanical Properties of Polyjet Voxel-Printed Parts and the Effect of Percolation.

3D Print Addit Manuf

October 2024

State Key Laboratory of Tribology, Department of Mechanical Engineering, Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment Control, Tsinghua University, Beijing, China.

The use of deformable materials in 3D printing has allowed for the fabrication of intricate soft robotics prototypes. Polyjet technology, with its ability to print multiple materials in a single print, has been popular in creating such designs. Vero and Agilus, the commercial materials provided by Polyjet, possess shape memory properties, making Polyjet ideal for high-precision and transformable applications.

View Article and Find Full Text PDF

Background: After surgical repair of rotator cuff (RC) tears, the torn tendon heals unsatisfactorily to the greater tuberosity owing to limited regeneration of the bone-tendon (BT) insertion. This situation motivates the need for new interventions to enhance BT healing in the RC repair site.

Purpose: To develop injectable fibrocartilage-forming cores by tethering fibroblast growth factor 18 (FGF18) on acellular fibrocartilage matrix microparticles (AFM-MPs) and evaluate their efficacy on BT healing.

View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!