Brain network provides important insights for the diagnosis of many brain disorders, and how to effectively model the brain structure has become one of the core issues in the domain of brain imaging analysis. Recently, various computational methods have been proposed to estimate the causal relationship (i.e., effective connectivity) between brain regions. Compared with traditional correlation-based methods, effective connectivity can provide the direction of information flow, which may provide additional information for the diagnosis of brain diseases. However, existing methods either ignore the fact that there is a temporal-lag in the information transmission across brain regions, or simply set the temporal-lag value between all brain regions to a fixed value. To overcome these issues, we design an effective temporal-lag neural network (termed ETLN) to simultaneously infer the causal relationships and the temporal-lag values between brain regions, which can be trained in an end-to-end manner. In addition, we also introduce three mechanisms to better guide the modeling of brain networks. The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3265364DOI Listing

Publication Analysis

Top Keywords

brain regions
16
brain
11
effective temporal-lag
8
diagnosis brain
8
effective connectivity
8
temporal-lag
5
structure-guided effective
4
temporal-lag connectivity
4
connectivity network
4
network revealing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!