Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interface polarity plays a vital role in the physical properties of oxide heterointerfaces because it can cause specific modifications of the electronic and atomic structure. Reconstruction due to the strong polarity of the NdNiO/SrTiO interface in recently discovered superconducting nickelate films may play an important role, as no superconductivity has been observed in the bulk. By employing four-dimensional scanning transmission electron microscopy and electron energy-loss spectroscopy, we studied effects of oxygen distribution, polyhedral distortion, elemental intermixing, and dimensionality in NdNiO/SrTiO superlattices grown on SrTiO (001) substrates. Oxygen distribution maps show a gradual variation of the oxygen content in the nickelate layer. Remarkably, we demonstrate thickness-dependent interface reconstruction due to a polar discontinuity. An average cation displacement of ∼0.025 nm at interfaces in 8NdNiO/4SrTiO superlattices is twice larger than that in 4NdNiO/2SrTiO superlattices. Our results provide insights into the understanding of reconstructions at NdNiO/SrTiO polar interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141440 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c00192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!