A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Achieving Practical High-Energy-Density Lithium-Metal Batteries by a Dual-Anion Regulated Electrolyte. | LitMetric

Achieving Practical High-Energy-Density Lithium-Metal Batteries by a Dual-Anion Regulated Electrolyte.

Adv Mater

School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China.

Published: July 2023

Lithium-metal batteries (LMBs) using lithium-metal anodes and high-voltage cathodes have been deemed as one of the most promising high-energy-density battery technology. However, its practical application is largely hindered by the notorious dendrite growth of lithium-metal anodes, the fast structure degradation of the cathode, and insufficient electrode-electrolyte interphase kinetics. Here, a dual-anion regulated electrolyte is developed for LMBs using lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and lithium difluoro(bisoxalato)phosphate (LiDFBOP) as anion regulators. The incorporation of TFSI in the solvation sheath reduces the desolvation energy of Li , and DFBOP promotes the formation of highly ion-conductive and sustainable inorganic-rich interphases on the electrodes. Significantly enhanced performance is demonstrated on Li||LiNi Co Mn O pouch cells, with 84.6% capacity retention after 150 cycles in 6.0 Ah pouch cells and an ultrahigh rate capability up to 5 C in 2.0 Ah pouch cells. Furthermore, a pouch cell with an ultralarge capacity of 39.0 Ah is fabricated and achieves an ultrahigh energy density of 521.3 Wh kg . The findings provide a facile electrolyte design strategy for promoting the practical utilization of high-energy-density LMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202301171DOI Listing

Publication Analysis

Top Keywords

pouch cells
12
lithium-metal batteries
8
dual-anion regulated
8
regulated electrolyte
8
lithium-metal anodes
8
achieving practical
4
practical high-energy-density
4
lithium-metal
4
high-energy-density lithium-metal
4
batteries dual-anion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!