Evaluation of the Effect of Fibroblasts on Melanoma Metastasis Using a Biomimetic Co-Culture Model.

ACS Biomater Sci Eng

Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, China.

Published: May 2023

Melanoma is a highly malignant tumor originating from melanocytes. The 5-year survival rate of primary melanoma is 98%, whereas the survival rate of metastatic melanoma is only 10%, which can be attributed to the insensitivity to existing treatments. Fibroblasts are the primary cells in the dermis that promote melanoma metastasis; however, the molecular mechanism underlying the fibroblast-melanoma interaction is yet to be completely understood. Herein, gelatin methacryloyl (GelMA) was used to construct a co-culture model for melanoma cells (A375) and fibroblasts. GelMA retains the good biological properties of collagen, which has been identified as the primary component of the melanoma tumor microenvironment. Fibroblasts were encapsulated in GelMA, whereas A375 cells were cultured on the GelMA surface, which realistically mimics the macrostructure of melanoma. A375 cells co-cultured with fibroblasts demonstrated a higher cellular proliferation rate, potentials of neoneurogenesis, overexpression of epithelial mesenchymal transition markers, and a faster migration rate compared with A375 cells cultured alone, which could be due to the cancer-associated fibroblast activation and the overexpression of transforming growth factor β1 and fibroblast growth factor-2 by fibroblasts. Overall, this study revealed the possible mechanisms of fibroblast-melanoma interaction and suggested that this co-culture model could be potentially further developed as a platform for screening chemotherapies in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.2c01186DOI Listing

Publication Analysis

Top Keywords

co-culture model
12
a375 cells
12
melanoma
8
melanoma metastasis
8
model melanoma
8
survival rate
8
fibroblast-melanoma interaction
8
cells cultured
8
fibroblasts
5
cells
5

Similar Publications

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Background: Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!