Background: Postoperative risk stratification is challenging in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) who undergo artificial liver treatment. This study characterizes patients' clinical parameters and laboratory biomarkers with different in-hospital outcomes. The purpose was to establish a multi-subgroup combined predictive model and analyze its predictive capability.

Methods: We enrolled HBV-ACLF patients who received plasma exchange (PE)-centered artificial liver support system (ALSS) therapy from May 6, 2017, to April 6, 2022. There were 110 patients who died (the death group) and 110 propensity score-matched patients who achieved satisfactory outcomes (the survivor group). We compared baseline, before ALSS, after ALSS, and change ratios of laboratory biomarkers. Outcome prediction models were established by generalized estimating equations (GEE). The discrimination was assessed using receiver operating characteristic analyses. Calibration plots compared the mean predicted probability and the mean observed outcome.

Results: We built a multi-subgroup predictive model (at admission; before ALSS; after ALSS; change ratio) to predict in-hospital outcomes of HBV-ACLF patients who received PE-centered ALSS. There were 110 patients with 363 ALSS sessions who survived and 110 who did not, and 363 ALSS sessions were analyzed. The univariate GEE models revealed that several parameters were independent risk factors. Clinical parameters and laboratory biomarkers were entered into the multivariate GEE model. The discriminative power of the multivariate GEE models was excellent, and calibration showed better agreement between the predicted and observed probabilities than the univariate models.

Conclusions: The multi-subgroup combined predictive model generated accurate prognostic information for patients undergoing HBV-ACLF patients who received PE-centered ALSS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072158PMC
http://dx.doi.org/10.3389/fcimb.2023.1107351DOI Listing

Publication Analysis

Top Keywords

predictive model
16
laboratory biomarkers
16
clinical parameters
12
parameters laboratory
12
in-hospital outcomes
12
artificial liver
12
hbv-aclf patients
12
patients received
12
patients
9
alss
9

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Circadian Misalignment Impacts Cardiac Autonomic Modulation in Adolescence.

Sleep

January 2025

Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.

Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.

Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!