With soil fertility loss reached a critical state in arid and semi-arid regions, farmers are constrained to use mineral fertilizers, which are costly, non-eco-friendly and less effective in improving soil fertility than organic fertilizers such as dewatered sewage sludge (SS) and poultry manure (PM). In this regard, the current study aimed to highlight through experiments the positive effect of SS and PM applications on soil fertility and durum wheat growth. It targeted to demonstrate the safe and wise use of organic fertilization while assessing heavy metals in both soil and plant. The experiment was carried out in two batches of thirty-two pots, one for each treatment (SS and PM), in addition to the control with no fertilization. SS and PM were applied separately in three doses (D1 = 50 g, D2 = 100 g, and D3 = 200 g DM fertilizer/pot). The applications of both SS and PM induced a significant increase in plant-available phosphorus, organic matter, nitrates, moisture and electrical conductivity in soil, where these improvements were higher in PM compared to SS treatment. A significant accumulation of proline associated with an increase in biomass that were both proportional with fertilizer dose levels. Our findings revealed a loss in relative water content and leaf area of the plant. Correlations showed several significant relationships between soil parameters studied. The dose D2 of each fertilizer was the most efficient to improving both soil properties and plant components. Plant zinc concentration increased significantly with increase in soil zinc in PM amendments, however it decreased in SS. These relationships were not significant in copper for the two fertilizers. Both SS and PM improved soil fertility and plant growth compared to the control, thus this practice is a promising solution to tackle soil fertility loss and low production in drylands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070387 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e14615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!