It is well-known that phosphate-solubilizing bacteria (PSB) promote crop growth and yield. The information regarding characterization of PSB isolated from agroforestry systems and their impact on wheat crops under field conditions is rarely known. In the present study, we aim to develop psychrotroph-based P biofertilizers, and for that, four PSB strains ( sp. L3, sp. P2, sp. T3, and sp. T4) previously isolated from three different agroforestry zones and already screened for wheat growth under pot trial conditions were evaluated on wheat crop under field conditions. Two field experiments were employed; set 1 includes PSB + recommended dose of fertilizers (RDF) and set 2 includes PSB - RDF. In both field experiments, the response of the PSB-treated wheat crop was significantly higher compared to the uninoculated control. In field set 1, an increase of 22% in grain yield (GY), 16% in biological yield (BY), and 10% in grain per spike (GPS) was observed in consortia (CNS, L3 + P2) treatment, followed by L3 and P2 treatments. Inoculation of PSB mitigates soil P deficiency as it positively influences soil alkaline phosphatase (AP) and soil acid phosphatase (AcP) activity which positively correlated with grain NPK %. The highest grain NPK % was reported in CNS-treated wheat with RDF (N-0.26%, P-0.18%, and K-1.66%) and without RDF (N-0.27, P-0.26, and K-1.46%), respectively. All parameters, including soil enzyme activities, plant agronomic data, and yield data were analyzed by principal component analysis (PCA), resulting in the selection of two PSB strains. The conditions for optimal P solubilization, in L3 (temperature-18.46, pH-5.2, and glucose concentration-0.8%) and P2 (temperature-17°C, pH-5.0, and glucose concentration-0.89%), were obtained through response surface methodology (RSM) modeling. The P solubilizing potential of selected strains at <20°C makes them a suitable candidate for the development of psychrotroph-based P biofertilizers. Low-temperature P solubilization of the PSB strains from agroforestry systems makes them potential biofertilizers for winter crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072159PMC
http://dx.doi.org/10.3389/fmicb.2023.1135693DOI Listing

Publication Analysis

Top Keywords

wheat growth
8
growth yield
8
field conditions
8
psb strains
8
wheat crop
8
field experiments
8
set includes
8
includes psb
8
grain npk
8
psb
7

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Mechanistic Insights into the Effects of Aged Polystyrene Nanoplastics on the Toxicity of Cadmium to Triticum Aestivum.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.

The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.

View Article and Find Full Text PDF

Background: Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco.

View Article and Find Full Text PDF

Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat.

View Article and Find Full Text PDF

Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!